Projective linear groups as automorphism groups of chiral polytopes
نویسندگان
چکیده
منابع مشابه
characterization of projective general linear groups
let $g$ be a finite group and $pi_{e}(g)$ be the set of element orders of $g $. let $k in pi_{e}(g)$ and $s_{k}$ be the number of elements of order $k $ in $g$. set nse($g$):=${ s_{k} | k in pi_{e}(g)}$. in this paper, it is proved if $|g|=|$ pgl$_{2}(q)|$, where $q$ is odd prime power and nse$(g)= $nse$($pgl$_{2}(q))$, then $g cong $pgl$_
متن کاملAUTOMORPHISM GROUP OF GROUPS OF ORDER pqr
H"{o}lder in 1893 characterized all groups of order $pqr$ where $p>q>r$ are prime numbers. In this paper, by using new presentations of these groups, we compute their full automorphism group.
متن کاملTwo-dimensional Projective Linear Groups
This article is a contribution to the study of the automorphism groups of 2 − (v, k, 1) designs. Let G act as a block-transitive and point-primitive automorphism group of a non-trivial design D with v points and blocks of size k. Set k2 = (k, v−1). Assume q = pf for some prime p and positive integer f . If q ≥ [(k2k − k2 + 1)f ]2, then Soc(G), the socle of G, is not PSL(2, q). Mathematics Subje...
متن کاملChirality and projective linear groups
In recent years the term ‘chiral’ has been used for geometric and combinatorial figures which are symmetrical by rotation but not by reflection. The correspondence of groups and polytopes is used to construct infinite series of chiral and regular polytopes whose facets or vertex-figures are chiral or regular toroidal maps. In particular, the groups PSL,(Z,) are used to construct chiral polytope...
متن کاملRelatively projective groups as absolute Galois groups
By two well-known results, one of Ax, one of Lubotzky and van den Dries, a profinite group is projective iff it is isomorphic to the absolute Galois group of a pseudo-algebraically closed field. This paper gives an analogous characterization of relatively projective profinite groups as absolute Galois groups of regularly closed fields.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry
سال: 2017
ISSN: 0047-2468,1420-8997
DOI: 10.1007/s00022-016-0367-6